4,150 research outputs found

    A pattern-recognition procedure for scanning oscillation films

    Full text link

    iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects

    Full text link
    We address the task of 6D pose estimation of known rigid objects from single input images in scenarios where the objects are partly occluded. Recent RGB-D-based methods are robust to moderate degrees of occlusion. For RGB inputs, no previous method works well for partly occluded objects. Our main contribution is to present the first deep learning-based system that estimates accurate poses for partly occluded objects from RGB-D and RGB input. We achieve this with a new instance-aware pipeline that decomposes 6D object pose estimation into a sequence of simpler steps, where each step removes specific aspects of the problem. The first step localizes all known objects in the image using an instance segmentation network, and hence eliminates surrounding clutter and occluders. The second step densely maps pixels to 3D object surface positions, so called object coordinates, using an encoder-decoder network, and hence eliminates object appearance. The third, and final, step predicts the 6D pose using geometric optimization. We demonstrate that we significantly outperform the state-of-the-art for pose estimation of partly occluded objects for both RGB and RGB-D input

    Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants

    Full text link

    Free energy landscape of mechanically unfolded model proteins: extended Jarzinsky versus inherent structure reconstruction

    Full text link
    The equilibrium free energy landscape of off-lattice model heteropolymers as a function of an internal coordinate, namely the end-to-end distance, is reconstructed from out-of-equilibrium steered molecular dynamics data. This task is accomplished via two independent methods: by employing an extended version of the Jarzynski equality (EJE) and the inherent structure (IS) formalism. A comparison of the free energies estimated with these two schemes with equilibrium results obtained via the umbrella sampling technique reveals a good quantitative agreement among all the approaches in a range of temperatures around the ``folding transition'' for the two examined sequences. In particular, for the sequence with good foldability properties, the mechanically induced structural transitions can be related to thermodynamical aspects of folding. Moreover, for the same sequence the knowledge of the landscape profile allows for a good estimation of the life times of the native configuration for temperatures ranging from the folding to the collapse temperature. For the random sequence, mechanical and thermal unfolding appear to follow different paths along the landscape.Comment: Latex manuscript, 20 pages, 23 figures, submitted to Physical Review

    Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector

    Full text link

    A discussion of the solution for the best rotation to relate two sets of vectors

    Full text link

    Distances and classification of amino acids for different protein secondary structures

    Full text link
    Window profiles of amino acids in protein sequences are taken as a description of the amino acid environment. The relative entropy or Kullback-Leibler distance derived from profiles is used as a measure of dissimilarity for comparison of amino acids and secondary structure conformations. Distance matrices of amino acid pairs at different conformations are obtained, which display a non-negligible dependence of amino acid similarity on conformations. Based on the conformation specific distances clustering analysis for amino acids is conducted.Comment: 15 pages, 8 figure

    Folding, Design and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers

    Full text link
    We present the results of a self-consistent, unified molecular dynamics study of simple model heteropolymers in the continuum with emphasis on folding, sequence design and the determination of the interaction parameters of the effective potential between the amino acids from the knowledge of the native states of the designed sequences.Comment: 8 pages, 3 Postscript figures, uses RevTeX. Submitted to Physical Review Letter

    A Central Partition of Molecular Conformational Space. IV. Extracting information from the graph of cells

    Full text link
    In previous works [physics/0204035, physics/0404052, physics/0509126] a procedure was described for dividing the 3Ă—N3 \times N-dimensional conformational space of a molecular system into a number of discrete cells, this partition allowed the building of a combinatorial structure from data sampled in molecular dynamics trajectories: the graph of cells, that encodes the set of cells in conformational space that are visited by the system in its thermal wandering. Here we outline a set of procedures for extracting useful information from this structure: 1st) interesting regions in the volume occupied by the system in conformational space can be bounded by a polyhedral cone whose faces are determined empirically from a set of relations between the coordinates of the molecule, 2nd) it is also shown that this cone can be decomposed into a hierarchical set of smaller cones, 3rd) the set of cells in a cone can be encoded by a simple combinatorial sequence.Comment: added an intrduction and reference
    • …
    corecore